Warning: mkdir(): No space left on device in /var/www/tg-me/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/dsproglib/--): Failed to open stream: No such file or directory in /var/www/tg-me/post.php on line 50
Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение | Telegram Webview: dsproglib/6411 -
Telegram Group & Telegram Channel
🎯 Фишка инструмента: топ-5 библиотек Python для EDA (разведочного анализа данных)

EDA (Exploratory Data Analysis) — это важнейший этап анализа данных, помогающий понять структуру, закономерности и аномалии в данных перед моделированием. Ниже — библиотеки, которые максимально ускоряют и упрощают этот процесс.

1️⃣ pandas\_profiling
import pandas_profiling  
report = pandas_profiling.ProfileReport(df)
report.to_file("eda_report.html")


🟪 Генерирует полноценный HTML-отчёт по DataFrame.
🟪 Показывает распределения, корреляции, пропущенные значения, типы данных и многое другое.
🟪 Отличный способ получить обзор по данным всего за пару строк кода.

2️⃣ Sweetviz
import sweetviz  
report = sweetviz.analyze(df)
report.show_html("sweetviz_report.html")


🟪 Создаёт красивый визуальный EDA-отчёт.
🟪 Можно сравнивать два набора данных (например, обучающую и тестовую выборки).
🟪 Очень полезен для выявления смещений и различий между выборками.

3️⃣ D-Tale
import dtale  
dtale.show(df)


🟪 Открывает DataFrame в веб-интерфейсе прямо в браузере.
🟪 Позволяет фильтровать, сортировать, строить графики и смотреть статистику без написания кода.
🟪 Идеален для быстрой визуальной разведки данных.

4️⃣ Skimpy
import skimpy  
skimpy.clean_columns(df)
skimpy.scan(df)


🟪 Очищает названия столбцов (удаляет пробелы, приводит к удобному формату).
🟪 Показывает компактную сводку: типы, пропуски, уникальные значения и т.д.
🟪 Очень лёгкая и быстрая библиотека — минимализм и эффективность.

5️⃣ AutoViz
from autoviz.AutoViz_Class import AutoViz_Class  
AV = AutoViz_Class()
AV.AutoViz("your_file.csv")


🟪 Автоматически определяет тип переменных и строит графики: распределения, тренды, связи между переменными.
🟪 Работает напрямую с CSV и Pandas DataFrame.
🟪 Подходит для быстрого первичного анализа без ручного выбора визуализаций.

Библиотека дата-сайентиста #буст
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/dsproglib/6411
Create:
Last Update:

🎯 Фишка инструмента: топ-5 библиотек Python для EDA (разведочного анализа данных)

EDA (Exploratory Data Analysis) — это важнейший этап анализа данных, помогающий понять структуру, закономерности и аномалии в данных перед моделированием. Ниже — библиотеки, которые максимально ускоряют и упрощают этот процесс.

1️⃣ pandas\_profiling

import pandas_profiling  
report = pandas_profiling.ProfileReport(df)
report.to_file("eda_report.html")


🟪 Генерирует полноценный HTML-отчёт по DataFrame.
🟪 Показывает распределения, корреляции, пропущенные значения, типы данных и многое другое.
🟪 Отличный способ получить обзор по данным всего за пару строк кода.

2️⃣ Sweetviz
import sweetviz  
report = sweetviz.analyze(df)
report.show_html("sweetviz_report.html")


🟪 Создаёт красивый визуальный EDA-отчёт.
🟪 Можно сравнивать два набора данных (например, обучающую и тестовую выборки).
🟪 Очень полезен для выявления смещений и различий между выборками.

3️⃣ D-Tale
import dtale  
dtale.show(df)


🟪 Открывает DataFrame в веб-интерфейсе прямо в браузере.
🟪 Позволяет фильтровать, сортировать, строить графики и смотреть статистику без написания кода.
🟪 Идеален для быстрой визуальной разведки данных.

4️⃣ Skimpy
import skimpy  
skimpy.clean_columns(df)
skimpy.scan(df)


🟪 Очищает названия столбцов (удаляет пробелы, приводит к удобному формату).
🟪 Показывает компактную сводку: типы, пропуски, уникальные значения и т.д.
🟪 Очень лёгкая и быстрая библиотека — минимализм и эффективность.

5️⃣ AutoViz
from autoviz.AutoViz_Class import AutoViz_Class  
AV = AutoViz_Class()
AV.AutoViz("your_file.csv")


🟪 Автоматически определяет тип переменных и строит графики: распределения, тренды, связи между переменными.
🟪 Работает напрямую с CSV и Pandas DataFrame.
🟪 Подходит для быстрого первичного анализа без ручного выбора визуализаций.

Библиотека дата-сайентиста #буст

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/dsproglib/6411

View MORE
Open in Telegram


Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

However, analysts are positive on the stock now. “We have seen a huge downside movement in the stock due to the central electricity regulatory commission’s (CERC) order that seems to be negative from 2014-15 onwards but we cannot take a linear negative view on the stock and further downside movement on the stock is unlikely. Currently stock is underpriced. Investors can bet on it for a longer horizon," said Vivek Gupta, director research at CapitalVia Global Research.

The global forecast for the Asian markets is murky following recent volatility, with crude oil prices providing support in what has been an otherwise tough month. The European markets were down and the U.S. bourses were mixed and flat and the Asian markets figure to split the difference.The TSE finished modestly lower on Friday following losses from the financial shares and property stocks.For the day, the index sank 15.09 points or 0.49 percent to finish at 3,061.35 after trading between 3,057.84 and 3,089.78. Volume was 1.39 billion shares worth 1.30 billion Singapore dollars. There were 285 decliners and 184 gainers.

Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение from nl


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA